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ABSTRACT SIMULATION ENVIRONMENT

Despite the obvious importance of thermal comfort in In this paper we describe a combined analytic and
the design of indoor environment, it has not been case-based approach to address these problems:
effectively integrated with design decision support

tools. The reasons can be attributed, in part, to anl. First, we describe how the thermal comfort mod-
absence of modular and flexible software architecture ~ ule in SEMPER closely collaborates with the
that facilitates dynamic data transfer between energy energy performance, air flow, and HVAC simula-
performance, lighting simulation, and thermal com-  tion module to provide real-time feedback to the
fort modules. Research has shown that the mathemat- designer on the status of thermal environment in
ical models of thermal comfort sometimes fail to  terms of numeric indicators.

accurately describe or predict thermal comfort in . ) )
workplace settings even when the values of environ-2- S€cond, we describe the implementation of a
mental and personal parameters are known. Thus, Knowledge-based expert system support to aug-
there is a critical need to provide a thermal comfort ~ Ment the thermal comfort simulation engine using
evaluation framework that, in addition to the algorith-  11€ld studies data.

mic dl_mtplemen(tjat;on of T(;:lthenk"natmal thfe :{Tal corr_1f_ort| SEMPER—the computational framework that enables
prediction models, would make use of the empirical y,, implementation is an active, multi-performance

knowlgdge basg Ttk at yearsprototype design environment (Mahdavi 1996, Mah-
from field experiments around the world. davi et al. 1996). It incorporates an object-oriented,
space-based shared building representation, with
INTRODUCTION dynamic links to different building performance eval-
In spite of the widespread implications of thermal uation applications. It is thereby intended to provide
comfort on energy use and the perception of indoor computational support for the evaluation of buildings
environmental quality, architects and systems across multiple performance mandates concurrently,
designer have tended to neglect the climatic, behav-with a view toward achieving total building perfor-
ioral and adaptive factors affecting thermal comfort mance and systems integration. SEMPER'’s primary
requirements at the time of designing buildings, components arei) a shared object model (SOM),
HVAC and control systems. In the process, they misswhich encapsulates a space-based representation of a
out on a significant opportunity to save energy and building; ii) various simulation modules that imple-
reduce associated emissions and, in most design situanent individual domain knowledge using application
tions, fall short of providing the optimum environ- specific object model representations of the building;
mental settings for thermal satisfaction. Realizing aiii) a database that stores shared object model of the
need for design support, ASHRAE (1994) invited building and facilitates the derivation of domain
proposals to develop a tool that would provide feed- object models (DOM) and dynamic data transfer
back to designers in evaluating indoor thermal envi- between them; and/) a user interface for creating
ronments. The outcome was an application (Fountaingeometric constructs and other widgets for accepting
and Huizenga 1996) that can calculate thermal com-numerical and text values.

fort indices based on the user input of environmental

and personal parameters. Although this was a goodT0 realize the "integration” objectiveh&rmal_hdi-

first step, it fell well short of providing an integrated ces for_Cenfort Module or TICO was designed as
framework for early design support and modification part of an integral thermal design environment com-
capabilities to meet the stated design objective. OnePrising NODEM (energy simulation), BACH (air
had to wait for the completion of design and then useflow) and HVAC module.

a separate energy analysis tool to generate input i .

parameters before performing a thermal comfort eval-* 1/CO implements two algorithms (based on
uation. The effort was in line with many other exist-  Stéady-state and two-node model of human body)
ing building performance evaluation stand alone that are used to predict thermal comfort under a
packages, its use being limited to experts seeking numerical framework. Our perception of thermal

design verification or for standardizing field study ~ comfort and the subsequent evaluation and accep-
calculations (de Dear and Schiller 1998). tance of indoor thermal environment depends on

the thermal exchange between human body and




the environment, and the subsequent physiologi-domain (ASHRAE database) is outlined below. The
cal strain and perception of thermal sensation pre-processing of the database was important to
(Fanger 1970, Gagge et al. 1971). abstract the relevant information required for develop-
ing a strategy to offer aaxpert adviceto the users.
Furthermore, to help the users judge the quality of the
recommendations, a rating criteria has been developed.
The key variables involved in the analysis are:

In order to accurately predict thermal comfort using
the two algorithms, one should be able to calculate the
values of the environmental (air and mean radiant
temperature, relative humidity, air velocity) and per-

sonal_l(_ckilothmlg re5|sftan|fer? nd a(f‘t'\glty level) parame- 1. Climate/Geographical Location Based on the
ters. e values of all the variables except mean information gathered from the weather file, the

radiant temperature can either be specified as an input design is grouped into one of the following nine
to TICO, or derived from other thermal modules of climatic regions of the world. The climatic regions

SEMPER. with examples are listed below:

THE DISCREPANCY BETWEEN PRE- « Continental Subarcti@Montreal, Helsinki, etc.)
DICTED AND OBSERVED VALUES

After completing a comprehensive review of the exist- o
ing literature in the field of thermal comfort (Mahdavi °® Humid Midlatitude(Beijing, Moscow, etc.)
and Kumar 1996), it was clear that the numerical + Humid Subtropica{Sydney, Dhaka, etc.)
framework for calculating thermal comfort indices
needed refinement and enrichment in order to capture
certain complex aspects of thermal comfort. The mosts Semi-arid Midlatitude or Semi-des¢Reshawar)
serious shortcoming of these models is their problems,
with accurately describing or predicting thermal com-
fort in a variety of settings outside the climate cham-
ber even when the values of environmental and*® Tropical SavanngBangkok, Sao Paolo, etc.)
personal parameters are known (de Dear and Aulici-e \Wet EquatorialJakarta, Singapore, Manila, , etc.)
ems 1985,Schiller et. al. 1988, Busch 1992). The
challenge was to come up with a framework that is in 2. Environmental Control Systemt There is a dis-
closer agreement with the field studies conducted all  tinct correlation between the level of thermal com-
over the world, but especially in the natural ventilated  fort desired by occupants in a building and the
buildings of tropical climates where these discrepan-  controls system in place for regulating the environ-
cies are most pronounced. mental parameters inside a building. The three
alternatives are: active controls, passive controls,
Many researchers have stated the need for a knowl- and a combination of active and passive controls
edge-based system to address the inherent deficien-
cies in the numerical models (Auliciems and de Dear 3. Season Hourly values of environmental parame-
1978, Baker et al. 1994, Nicol et al. 1995, Mahdavi ters, together with thermal comfort indices for each
and Kumar 1996, de Dear and Schiller 1998). The  zone can be further divided by season to facilitate a
development of such a framework using the results of ~ more detailed season-specific analysis. This option
the field studies is an effort in this direction. The  is provided because of the dependence of thermal
knowledge-based support in TICO has been devel- —comfort perception on the prevailing season. The
oped to complement thermal comfort indices derived  three seasons used in the analysis are: Summer,
from the heat balance models of human body. Taking ~ Winter, and Swing (Spring, Fall)
advantage of the modular architecture of SEMPER,
and the dynamic data exchange capability accorded®ATA ABSTRACTION

by it between various modules (TICO, NODEM, The field studies made available under ASHRAE RP-
BACH, and HVAC), an active support mechanism has gg4 store large amount of data, not all of which is

been used to develop a richer set of controls with thegjrectly relevant for the task at hand. After careful
aim of maximizing occupant satisfaction. consideration, key parameters that affect thermal
comfort and energy performance were selected from
A FIELD STUDY BASED EVALUATIVE this database and are shownTeble 1 Three vari-
APPROACH ables DIFF (ASH - PMV) - also referred to&BMV,
This approach fine tunes the results derived from the Tneutral (Humphreys), and PMV (Humphreys) were
classical thermal comfort a|gorithms by Working in not originally in the database and were calculated for
tandem with a database of field studies made availableeach of the 46 field studies during pre-processing of
under ASHRAE RP-884 (de Dear 1998). The strategy data. The sequence of steps that was followed is:
to find one or more suitable cases from the search

¢ Desert(Las Vegas, Cairo, Karachi, etc.)

MediterraneanAthens, Rome, etc.)

Temperature Marine or West Coast Marif\@an-
couver, London, Melbourne, etc.)




The six factors affecting thermal comfort, outdoor
temperature, ASH or people’s thermal sensation
on the 7-point ASHRAE scale, PMV, DIFF (ASH

- PMV) or difference between the observed value
and predicted value, and PPD are selected. Critical
information pertaining to the climate, ventilation
and season type and the year in which the study
was conducted is also selected from the list of
variables for detailed reporting purposes.

For each study, mean values of all the identified
variables are calculated so that each study ends up
with one set of average values (the first data row
in Table ). Total number of subjects and total
number of data points are stored for each study
(fifth row in Table J) to be used for finding out the
statistical significance of experiments.

The maximum and minimum values and the stan-
dard deviation of the sample set for each of the
variables affecting thermal comfort are also calcu-
lated and stored (second, third and fourth row of
theTable J.

One noteworthy point about the entire analysis is

by Fanger's PMV. By the same token, if the plot is
bottom-heavy (DPMV is negative), the average
thermal sensation of the population is colder (or not
as warm depending on the actual thermal sensation
values) in comparison to the values predicted by
Fanger’s model. If either of these situations is true,
as happens in 39 out of 46 field studies, a clear
inference can be drawn from the field studies, and a
corresponding correction factor can be applied to
the computed value of PMV. In the remaining 7
cases, there is no clear indication since almost half
the population feels warmer and the other half feels
colder than what is being predicted by the model.
Instead of modifying the predicted PMV in such a
case, no correction factor is applieigure 2
shows the discrepancy between observed and pre-
dicted values using DPMV for benchmarking all
the field studies. It also shows that the discrepan-
cies are more pronounced in free running buildings
(8% as compared to 16%) and the PMV model
seem to exaggerate thermal discomfort on the
warmer side.

the assumption of a normal distribution of thermal METHODOLOGY

sensation votes (ASH), which is also the basis of The methodok)gy adopted is outlined below:

the PMV-PPD model.

A new index, DPMV (ASH - PMV) is derived. The
plot in Figure 1shows the discrepancies between
observed and predicted values. If this plot is top
heavy (DPMV is positive), then it is a clear indica-
tion that majority of the population is warmer (or
not as cold depending on the actual thermal sensa-
tion values) than what is currently being predicted

For a specific design situation, an hourly simulation
is run to calculate thermal comfort indices (PMV,
SET*, TSENS, DISC). Consequently, for example,
an average value of PMV together with the mean of
environmental and meteorological parameters are,
either inherited from NODEM and other SEMPER
modules (air temperature, air velocity) or calculated

TABLE 1: Matrix following data abstraction for each field study
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N/A N/A N/A N/A N/A 31.9 31.9 0.58 97.8 27.4 N/A <
a
=
N/A N/A N/A N/A N/A 1.2 1.2 0.12 6.6 0.07 N/A - q>;
ha
Climate System Type Researcher City Year Season Data pts.
Wet Naturally de Dear et al. Singapore 1991 Summer 583
Equatorial Ventilated

a. The min., max., and standard deviation row were used for calculating "reliability index" and hence calculated for thésrhahdables

and not for any performance indices



¢ From this reduced pool of field studies, a compen-
sation factodPMV is derived based on the range

) specified for individual thermal comfort variables.
Perceived thermal sensation fahilithg : B .
higher than PMV A reliability |nd§X|s assocgted with egdkPMV
! Data Pol % term by following the matrix shown ifable 2
>l PEEEes - The analysis behind the evolution of this rating is
5 50 100 150 200 250 300 3567300 450 500 550 described below.

berceived thermal sensation Table 2lays out the criteria for deriving theliability

2 lower-thanPMV. index of expert advice. After a match has been found
based on control type and the climate in which the
simulated building is located, the four environmental
Figure 1: APMV plotted for Table 1 variables under current design conditions are com-
pared against the corresponding value of the variable
for the field study, and points are allocated that can
range (in case of air temperature) from a maximum of
35 to a minimum of 3. This schema is based on the
multiple parametric runs of Fanger’'s comfort equa-
tion to evaluate the influence of the four environmen-
tal variables on the PMV. The points reflect the
relative importance of the variables in the determina-
tion of thermal comfort. The range of rating for any
advice can vary from a maximum of 100 (best) to a
minimum of 15 (worst).

40%
APMV > 0.2

16%
-0.2 >APMV) > 0.2

44%
APMV < -0.2

TABLE 2: Reliability Index for the "expert"
advice derived from field study data

For all field studies Within £1 | Within Min/ | Outside Min/
Std. Dev. | Max value | Max range
Air Temp. 35 15 3
MRT 25 10 3
33% Air Velocity 25 12 4
aPMY) > 0.2 Rel. Humidity 15 8 5
Total 100 45 15
-0.2 >APMV > 0.2
59% This reliability index provides a quantitative frame-

APMV < -0.2

work to adjust the value of thermal comfort indices
(PMV, in this case). InEquation 1 APMV is the
adjustment resulting from the analysis, which should
be made to the value of PMV calculated in TICG,, W
W,, etc. are theeliability indices and APMV, and
APMV, are the compensation factors associated with
Figure 2: Range of discrepancy between predicted ~ matching field studies. PMyqgifieq Can be inter-
and observed values preted as a term that has accounted for the discrep-

ancy found in observed and predicted values.
inside TICO (mean radiant temperature). For analy-

For field studies in free running buildings

sis purposes, the mean values of the parameters are _ W, xAPMV, + ... + W, x APMV,,
calculated based on either the number of occupancy MV = W @)
hours or a 24 hour period. Z

* An initial screening is performed using climate PMV odified = PMVgimulatea™ APMV 2

and control types to reduce the sample size of the_ ) )
field studies in the database. The premise being ! NiS adjusted value (PMy,gitied is used as the start-

that both thermal comfort and energy usage areing point for providing feedback to NODEM so that
closely linked to these two variables and at a mi

n- changes at the system level (in conjunction with
imum, a match is needed against them before con-BACH and HVAC module) or design level (SEM-
ducting a more complex analysis.

PER) can be made.



BI-DIRECTIONAL FUNCTIONALITY studies) is implemented here to achieve the desired
W performance.

The results of this analysis to modify PMV can no

be used to: Two modes of bi-directional support have been

implemented. In the first case, the user can specify
her performance requirements by requesting SEM-
PER toa) maximize thermal satisfaction and/oy

2. provide better and optimized controls for the Minimize energy use or minimize_ totql energy cost in
indoor thermal environment that will result in a the current design. In such a situation, the thermal

still higher satisfaction level for the occupants. ~ Suite of applications in SEMPER takes necessary
actions and suggests design changes to the user,

Past research has established the concept of a biwhich would help in achieving the performance
directional simulation environment to facilitate the requirements of the design. An example that shows
interactive and simultaneous modification of proper- how NODEM, BACH and TICO work together to
ties and the observation of changes in various build-maximize thermal satisfaction is shown later.

ing design and performance variables (Mahdavi 1993,
Mahdavi and Berberidou-Kallivoka 1993). In a bi- Inthe second case, the inherent intelligence embedded in

directional simulation environment, designers modify TICO is used to guide the HVAC module to achieve the
and observe bottlesign and performanagariables at ~ €nvironmental conditions that would satisfy the perfor-
different levels of abstraction. The bi-directional mance objectives of the design. The bi-directional pro-
approach can increase the effectiveness of computaCess, in this case, can be viewed as a two-step process. In
tional design support environments in at least two the first step, a target value of PMV, let us call it the first-
ways: ]_) by reducing the number of parametric varia- order performance variable, is either SPECiﬁEd by the
tions of design variables a designer may need todesigner or suggested by TICO after analyzing field
explore as the performance goal is defined at the outStudy data. The environmental parameters such as, air
set, and 2) by enhancing the designer’s understandingemperature, mean radiant temperature, relative humid-
of the complex and dynamic interactions between ity and air velocity, which can all be theoretically con-
various design and performance variables. trolled by HVAC systems are the design variables that
can be modified to bring about the desired changes in the
In most design problems, however, the design vari- performance variable. A methodology outlined below,
ables are constrained by building codes, contextualwhich relies on the knowledge ingrained in TICO is used
parameters, technological limitations, and designers’to suggest changes in the design variables that will bring
preferences. A bi-directional analysis tool incorporat- the performance variable closer to its final value. In the
ing such constraints can support performance responsecond step, the design variable, say air temperature,
sive design generation and modification. In the becomes the performance variable that can be modified
current situation, it entails recognizing performance by the HVAC module. The HVAC module can bring
(PMV or PPD) and design variables (air temperature, about this change by taking appropriate controls actions
air velocity etc.) and evolving a quantitative frame- such as, changing the chilled water temperature, modify-
work to implement the active support algorithm. ing the economizer settings or changing the speed and
volume of supply air in the distribution system. The first
As noted earlier, since the performance-to-designstage of this bi-directional strategy has been imple-
mapping process is an ambiguous one, the same pefmented in TICO and the second step will become func-
formance (e.g. optimizing PMV or minimizing PPD) tional once the HVAC module is integrated with the
can be achieved by passive design configurationSSEMPER framework.
(window dimensions/properties, ventilation or shad-
ing characteristics of design, varying thermal mass The first stage of the bi-directional thermal comfort
and insulation, etc.) or evolving a control strategy for inference mechanism entails:
HVAC systems (controlling the supply air tempera-
ture or regulating the temperature of radiant panels,1. Identifying performance variablesuch asPMV
incorporating enthalpy controls, etc.). As a result, the ~ andPPD, and define the objective function such
actual implementation of a bi-directional inference ~ asMin (PMV) at TICO level that would drive the
tool requires a clear decision-making process that can  Optimization process
be applied unambiguously at any stage of design.
Instead of relying completely on a preference mecha-
nism, a hybrid approach (both preference and heuris-
tic based) that involves the formalization of various
external or internal constraints and preferences (such
as code and standard requirements or results of field

1. design an indoor thermal environment that satis-
fies more people and is energy-efficient as well;

Predicted Mean Vote (PMV)Hourly values of
PMV calculated in TICO is used to arrive at the
initial value of PMV. Subsequently, PMV in a
space is assessed by taking a mean value of the
hourly values over an entire season or year. Opti-
mizing PMV is the major goal of the bi-directional



analysis. A user can specify an acceptable range
for PMV in which case the bi-directional infer-
ence mechanism makes sure that the value of
PMV remains in the specified range by constrain-
ing the values of the design variables.

2. ldentifying relevandesign variablessuch as air
temperature, mean radiant temperature, and air
velocity etc. and then assigning boundary condi-
tions and default values to them.

Normalized Distance (D)

For each of the design variables, an allowable
range is set by defining the minimum and maxi-
mum values, and an ordered set of discrete values
within the allowable range is determined using a
fixed increment value. In the current implementa-
tion, four design variables have been defined.
Table 3identifies the design variables along with
their boundary conditions and default values in
deriving the preference attributes for them. In the
case of air temperature, the minimum, maximum
and default values are 18°C, 30°C and 24°C
respectively as shown imable 3 However, the
user has the flexibility of setting one or all three 5.
values for all the design variables.

TABLE 3: Design variables with their min, max
and default values

Vgr?:gl]gs Min. | Max. Default Increment
Air Temp. | 18C | 30C 24C 0.6C
MRT 18c | 30C 24¢C 0.6C
Air Vel. 0 | o05ms?t 0.15 nis?t 0.02 nis?t 6.
Rel. Hum.| 30%|  70% 50% 2%
Activity | N/A N/A 60 W 2 N/A
Clothing | N/A N/A | 0.155 MEmv?T N/A

3. Deriving thenormalized distance (Dgttributefor
each of the variables identified above. The nor-
malized distance attribute of the design variables
is proportional to the difference between the cur-
rent and default value. As shownhkigure 3 the
normalized distance for an air temperature of 7.
19.5°C is 0.6. This means that the air temperature
will be incremented by this value at the end of the
current iteration. In other words, the normalized
distance is a dummy attribute for calculating the
increment or decrement term for various vari-
ables. Call it I.

4. Deriving the effectiveness (Eattribute for each
design variable. Under th®-directional approach,
the ability to bring about a change in PMV is
termed as theffectivenessf a design variable. To
deriveE, an incremental change is made in the vari-
able and the change in the value of the performance
variable is recorded. The increment for each design8.

1.0

o
o ~
o ol

o
)
al

min (18C) default (24C) max (36C)
Air Temperature

Figure 3: lllustration showing the derivation of

normalized distance attribute

variable was shown imable 3 For examplek for
air temperature is given by:

PMV, —PMV,
e B (5,20
E, m (3)
Deriving a relative normalized distancgD,,))
attribute for each of the four design variables. To
calculateD,, ; , thenormalized distancattribute
for each variable P..D, (calculated using the
stepped curve function derived earlier) will be

used. TheD  ; for any variable is then given by:

bi

Drel,i - MaX(Dl...Dn) (4)
Deriving arelative effectiveneqg,q) attribute for
each of the four design variables, (relative
effectiveness of nth design variable), is derived
using the individual effectiveness (E) of design
variables calculated in step 4. For any design vari-
able, it can now be calculated ustguation 5

— Ei
Erel,i - MaX(El...En) (5)

Calculating thepreference(P) index for each of
the variables at each design stage as shown in
Equation 6

P= We x EreI + Wp x DreI (6)

E,e; @and Dy for each of the design variables have
been defined in step 5 and 6 respectively.and

wp are the corresponding weighting factors for
these two attributes. For the purpose of the current
implementation, a value ofig = wy = 05  has

been used, which means that P must lie between 0
and 1.

In the case of an active design, the design variable
with the highest preference index is passed to the



HVAC module. In a passive design situation, the the studies that satisfy the search criteria. In this case,
ordered list of design variables is passed totwo matching field studies are found and their sum-

NODEM. The design variable with the highest mary information is displayed below iable 5

preference index will be modified by adding or sub-
tracting |, calculated in step 3. If design limitation
does not allow NODEM to bring about the change
using the design variable with the highest prefer-
ence index then the next design variable in the
sorted list will be selected. This process will go on
till NODEM modifies one of the design variables
or a better performance cannot be achieved unde
the current set of design conditions.

Repeating steps 3-8 till the objective function is sat-
isfied or a better performance cannot be achieved.

AN ILLUSTRATIVE EXAMPLE

The sequence of steps for modifying PMV based on
matching field studies is shown below:

+ Figure 4 shows the schematic design of a building
along with the space and grid information. NODEM
interacts with TICO by passing the geometric
attributes of spaces with thermal parameters as
arguments. As NODEM iterates through the spaces,
it calls TICO and the resulting grid of mean radiant
temperature and PMV is shown iRigure 4. This
capability to simulate mean radiant temperature and
thermal comfort values for each cell in a building
can help in devising a better control strategy, which
is one of the goals of the current exercise.

Based on the methodology evolved earlier, NODEM
communicates the climatic region and the environ-
mental control system type for the current design to
TICO. In this case, they areClimatic region Sin-
gapore (Wet Equatorial) arienvironmental Control
SystemNatural Ventilation (passive).

N 12m
I t, = 29.9C ty=29.2C
™ MRT =28.8°C MRT =29°C
PMV =1.14 PMV =1.15
t,= 29.9C ta= 29.9C t,=29.28C  t,=29.2PC
MRT =29.1°C  MRT =29.3°C MRT =29.3°C MRT =27.9°C
PMV =1.18 PMV =1.20 PMV =1.20 PMV = 1.05
1S
©
t,= 29.9C ta= 29.9C
MRT =29.3°C  MRT =29.2°C
PMV = 1.19 PMV = 1.19 Average PMV for building= 1.16
Climate = Singapore (Wet Equatorial)
Control = Passive

Figure 4: Results of running TICO on a building
in Singapore in tandem with NODEM

TABLE 4: Adjustment factor for PMV and the
associated reliability indices

(Base Case)

81%, PMV = 1.16

Comparison Averages (Mi\n/alr\;lzrlces D)
Design values| t;=29.3°C, RH = Not Required

Field Study 1 ta=30.3°C ta= 28°C, 32°C, 1.0°C,

(RI'=90) RH = 72% RH = 69%, 79%, 3.15%
APMV =-0.52

Field Study 2 ta=29.4C ty = 26°C, 31.9°C, 1.2°C

(RI = 80) RH = 74% , RH = 58%, 98%, 6.659

APMV =-0.67

Once the relevant field studies have been identified,
the discrepancy between Fanger’s predicted PMV and
thermal sensatioMPMV) experienced by people is
recorded.Table 4shows the environmental parame-
ters recorded in field studies and compares it with the
values in the current design situation. The reliability
index developed iffable 2for applying aAPMV term

to Fanger’s PMV, is shown in the 3rd columriTable

4 for the two field studies. If all the short-listed field
studies show the sam®PMV sign, as is the case
above (both point to a negative adjustment to the sim-
ulated PMV), an adjustment is made basedEqua-

tion 2 on page 4

TABLE 5: Field studies matching the climate and
controls specified in the current design

City Climate Control | Researcher
Jakarta Wet Equatorial Passive Karyono
Singapore Wet Equatorial Passive de Dear|

This results in a final value of -0.60 f&WPMV. The
simulated PMV value (1.16) must be adjusted by this
factor to take into account the results from the two field
studies as shown Figure 5 With the derivation of the
weightedAPMV term, the field study based analysis
and subsequent modification of PMV is complete.

CONCLUSIONS

It has been demonstrated that thermal comfort calcu-
lations can be integrated in a computer-aided archi-
tectural design environment just like any other
performance simulation and can play a major role in
optimizing energy use and enhancing thermal comfort
in a building. This has been done by exploiting the
inherent structural homologies between space-based
design representation and node-based "thermal zone"
representation. The technical contribution in terms of

The two parameters identified above are passed on afmplementation of TICO are:

arguments to the TICO module for field study evalua-

tion. It performs a search on the database and selects
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